Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
Nat Med ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714898

ABSTRACT

Large variability exists in people's responses to foods. However, the efficacy of personalized dietary advice for health remains understudied. We compared a personalized dietary program (PDP) versus general advice (control) on cardiometabolic health using a randomized clinical trial. The PDP used food characteristics, individual postprandial glucose and triglyceride (TG) responses to foods, microbiomes and health history, to produce personalized food scores in an 18-week app-based program. The control group received standard care dietary advice (US Department of Agriculture Guidelines for Americans, 2020-2025) using online resources, check-ins, video lessons and a leaflet. Primary outcomes were serum low-density lipoprotein cholesterol and TG concentrations at baseline and at 18 weeks. Participants (n = 347), aged 41-70 years and generally representative of the average US population, were randomized to the PDP (n = 177) or control (n = 170). Intention-to-treat analysis (n = 347) between groups showed significant reduction in TGs (mean difference = -0.13 mmol l-1; log-transformed 95% confidence interval = -0.07 to -0.01, P = 0.016). Changes in low-density lipoprotein cholesterol were not significant. There were improvements in secondary outcomes, including body weight, waist circumference, HbA1c, diet quality and microbiome (beta-diversity) (P < 0.05), particularly in highly adherent PDP participants. However, blood pressure, insulin, glucose, C-peptide, apolipoprotein A1 and B, and postprandial TGs did not differ between groups. No serious intervention-related adverse events were reported. Following a personalized diet led to some improvements in cardiometabolic health compared to standard dietary advice. ClinicalTrials.gov registration: NCT05273268 .

2.
Nat Commun ; 15(1): 3478, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658578

ABSTRACT

The expansion of the CRISPR-Cas toolbox is highly needed to accelerate the development of therapies for genetic diseases. Here, through the interrogation of a massively expanded repository of metagenome-assembled genomes, mostly from human microbiomes, we uncover a large variety (n = 17,173) of type II CRISPR-Cas loci. Among these we identify CoCas9, a strongly active and high-fidelity nuclease with reduced molecular size (1004 amino acids) isolated from an uncultivated Collinsella species. CoCas9 is efficiently co-delivered with its sgRNA through adeno associated viral (AAV) vectors, obtaining efficient in vivo editing in the mouse retina. With this study we uncover a collection of previously uncharacterized Cas9 nucleases, including CoCas9, which enriches the genome editing toolbox.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Microbiota , Gene Editing/methods , Humans , Animals , Mice , Microbiota/genetics , Dependovirus/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Associated Protein 9/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism , Retina/metabolism , Clostridiales/genetics , Clostridiales/enzymology , HEK293 Cells , Genetic Vectors/metabolism , Genetic Vectors/genetics
3.
Nature ; 628(8007): 424-432, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38509359

ABSTRACT

Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.


Subject(s)
Colorectal Neoplasms , Fusobacterium nucleatum , Animals , Humans , Mice , Adenoma/microbiology , Case-Control Studies , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/pathology , Feces/microbiology , Fusobacterium nucleatum/classification , Fusobacterium nucleatum/genetics , Fusobacterium nucleatum/isolation & purification , Fusobacterium nucleatum/pathogenicity , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Genome, Bacterial/genetics , Mouth/microbiology , Female
4.
NPJ Biofilms Microbiomes ; 10(1): 35, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555334

ABSTRACT

Malignant bile duct obstruction is typically treated by biliary stenting, which however increases the risk of bacterial infections. Here, we analyzed the microbial content of the biliary stents from 56 patients finding widespread microbial colonization. Seventeen of 36 prevalent stent species are common oral microbiome members, associate with disease conditions when present in the gut, and include dozens of biofilm- and antimicrobial resistance-related genes. This work provides an overview of the microbial communities populating the stents.


Subject(s)
Bacterial Infections , Cholestasis , Neoplasms , Humans , Biofilms , Cholestasis/surgery , Stents/adverse effects , Stents/microbiology
5.
bioRxiv ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464031

ABSTRACT

Viruses are an abundant and crucial component of the human microbiome, but accurately discovering them via metagenomics is still challenging. Currently, the available viral reference genomes poorly represent the diversity in microbiome samples, and expanding such a set of viral references is difficult. As a result, many viruses are still undetectable through metagenomics even when considering the power of de novo metagenomic assembly and binning, as viruses lack universal markers. Here, we describe a novel approach to catalog new viral members of the human gut microbiome and show how the resulting resource improves metagenomic analyses. We retrieved >3,000 viral-like particles (VLP) enriched metagenomic samples (viromes), evaluated the efficiency of the enrichment in each sample to leverage the viromes of highest purity, and applied multiple analysis steps involving assembly and comparison with hundreds of thousands of metagenome-assembled genomes to discover new viral genomes. We reported over 162,000 viral sequences passing quality control from thousands of gut metagenomes and viromes. The great majority of the retrieved viral sequences (~94.4%) were of unknown origin, most had a CRISPR spacer matching host bacteria, and four of them could be detected in >50% of a set of 18,756 gut metagenomes we surveyed. We included the obtained collection of sequences in a new MetaPhlAn 4.1 release, which can quantify reads within a metagenome matching the known and newly uncovered viral diversity. Additionally, we released the viral database for further virome and metagenomic studies of the human microbiome.

6.
Nat Med ; 30(3): 785-796, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38365950

ABSTRACT

Multiple clinical trials targeting the gut microbiome are being conducted to optimize treatment outcomes for immune checkpoint blockade (ICB). To improve the success of these interventions, understanding gut microbiome changes during ICB is urgently needed. Here through longitudinal microbiome profiling of 175 patients treated with ICB for advanced melanoma, we show that several microbial species-level genome bins (SGBs) and pathways exhibit distinct patterns from baseline in patients achieving progression-free survival (PFS) of 12 months or longer (PFS ≥12) versus patients with PFS shorter than 12 months (PFS <12). Out of 99 SGBs that could discriminate between these two groups, 20 were differentially abundant only at baseline, while 42 were differentially abundant only after treatment initiation. We identify five and four SGBs that had consistently higher abundances in patients with PFS ≥12 and <12 months, respectively. Constructing a log ratio of these SGBs, we find an association with overall survival. Finally, we find different microbial dynamics in different clinical contexts including the type of ICB regimen, development of immune-related adverse events and concomitant medication use. Insights into the longitudinal dynamics of the gut microbiome in association with host factors and treatment regimens will be critical for guiding rational microbiome-targeted therapies aimed at enhancing ICB efficacy.


Subject(s)
Gastrointestinal Microbiome , Melanoma , Microbiota , Humans , Gastrointestinal Microbiome/genetics , Melanoma/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Cognition
7.
Nat Commun ; 15(1): 1633, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395948

ABSTRACT

Tumor immunosurveillance plays a major role in melanoma, prompting the development of immunotherapy strategies. The gut microbiota composition, influencing peripheral and tumoral immune tonus, earned its credentials among predictors of survival in melanoma. The MIND-DC phase III trial (NCT02993315) randomized (2:1 ratio) 148 patients with stage IIIB/C melanoma to adjuvant treatment with autologous natural dendritic cell (nDC) or placebo (PL). Overall, 144 patients collected serum and stool samples before and after 2 bimonthly injections to perform metabolomics (MB) and metagenomics (MG) as prespecified exploratory analysis. Clinical outcomes are reported separately. Here we show that different microbes were associated with prognosis, with the health-related Faecalibacterium prausnitzii standing out as the main beneficial taxon for no recurrence at 2 years (p = 0.008 at baseline, nDC arm). Therapy coincided with major MB perturbations (acylcarnitines, carboxylic and fatty acids). Despite randomization, nDC arm exhibited MG and MB bias at baseline: relative under-representation of F. prausnitzii, and perturbations of primary biliary acids (BA). F. prausnitzii anticorrelated with BA, medium- and long-chain acylcarnitines. Combined, these MG and MB biomarkers markedly determined prognosis. Altogether, the host-microbial interaction may play a role in localized melanoma. We value systematic MG and MB profiling in randomized trials to avoid baseline differences attributed to host-microbe interactions.


Subject(s)
Melanoma , Microbiota , Humans , Metabolic Reprogramming , Microbiota/genetics , Dendritic Cells
8.
Cell Rep Med ; 5(3): 101426, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38366600

ABSTRACT

The human gut microbiota is influenced by various factors, including health status and environmental conditions, yet considerable inter-individual differences remain unexplained. Previous studies identified that the gut microbiota of men who have sex with men (MSM) is distinct from that of non-MSM. Here, we reveal through species-level microbiota analysis using shotgun metagenomics that the gut microbiota of many MSM with Western origin resembles gut microbial communities of non-Westernized populations. Specifically, MSM gut microbiomes are frequently dominated by members of the Prevotellaceae family, including co-colonization of species from the Segatella copri complex and unknown Prevotellaceae members. Questionnaire-based analysis exploring inter-individual differences in MSM links specific sexual practices to microbiota composition. Moreover, machine learning identifies microbial features associated with sexual activities in MSM. Together, this study shows associations of sexual activities with gut microbiome alterations in MSM, which may have a large impact on population-based microbiota studies.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Sexual and Gender Minorities , Male , Humans , Homosexuality, Male , Sexual Behavior
9.
Diabetol Metab Syndr ; 16(1): 50, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409061

ABSTRACT

BACKGROUND AND AIM: Unhealthy dietary habits and highly caloric foods induce metabolic alterations and promote the development of the inflammatory consequences of obesity, insulin resistance, diabetes and cardiovascular diseases. Describing an inflammatory effect of diet is difficult to pursue, owing lacks of standardized quali-quantitative dietary assessments. The Dietary Inflammatory Index (DII) has been proposed as an estimator of the pro- or anti-inflammatory effect of nutrients and higher DII values, which indicate an increased intake of nutrients with pro-inflammatory effects, relate to an increased risk of metabolic and cardiovascular diseases and we here assessed whether they reflect biologically relevant plasmatic variations of inflammatory proteins. METHODS: In this cross-sectional study, seven days dietary records from 663 subjects in primary prevention for cardiovascular diseases were analyzed to derive the intake of nutrients, foods and to calculate DII. To associate DII with the Normalized Protein eXpression (NPX), an index of abundance, of a targeted panel of 368 inflammatory biomarkers (Olink™) measured in the plasma, we divided the population by the median value of DII (1.60 (0.83-2.30)). RESULTS: 332 subjects with estimated DII over the median value reported a higher intake of saturated fats but lower intakes of poly-unsaturated fats, including omega-3 and omega-6 fats, versus subjects with estimated dietary DII below the median value (N = 331). The NPX of 61 proteins was increased in the plasma of subjects with DII > median vs. subjects with DII < median. By contrast, in the latter group, we underscored only 3 proteins with increased NPX. Only 23, out of these 64 proteins, accurately identified subjects with DII > median (Area Under the Curve = 0.601 (0.519-0.668), p = 0.035). CONCLUSION: This large-scale proteomic study supports that higher DII reflects changes in the plasmatic abundance of inflammatory proteins. Larger studies are warranted to validate.

10.
NPJ Biofilms Microbiomes ; 10(1): 12, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374114

ABSTRACT

We performed a longitudinal shotgun metagenomic investigation of the plaque microbiome associated with peri-implant diseases in a cohort of 91 subjects with 320 quality-controlled metagenomes. Through recently improved taxonomic profiling methods, we identified the most discriminative species between healthy and diseased subjects at baseline, evaluated their change over time, and provided evidence that clinical treatment had a positive effect on plaque microbiome composition in patients affected by mucositis and peri-implantitis.


Subject(s)
Microbiota , Peri-Implantitis , Humans , Peri-Implantitis/therapy
11.
Nat Protoc ; 19(5): 1291-1310, 2024 May.
Article in English | MEDLINE | ID: mdl-38267717

ABSTRACT

Deep investigation of the microbiome of food-production and food-processing environments through whole-metagenome sequencing (WMS) can provide detailed information on the taxonomic composition and functional potential of the microbial communities that inhabit them, with huge potential benefits for environmental monitoring programs. However, certain technical challenges jeopardize the application of WMS technologies with this aim, with the most relevant one being the recovery of a sufficient amount of DNA from the frequently low-biomass samples collected from the equipment, tools and surfaces of food-processing plants. Here, we present the first complete workflow, with optimized DNA-purification methodology, to obtain high-quality WMS sequencing results from samples taken from food-production and food-processing environments and reconstruct metagenome assembled genomes (MAGs). The protocol can yield DNA loads >10 ng in >98% of samples and >500 ng in 57.1% of samples and allows the collection of, on average, 12.2 MAGs per sample (with up to 62 MAGs in a single sample) in ~1 week, including both laboratory and computational work. This markedly improves on results previously obtained in studies performing WMS of processing environments and using other protocols not specifically developed to sequence these types of sample, in which <2 MAGs per sample were obtained. The full protocol has been developed and applied in the framework of the European Union project MASTER (Microbiome applications for sustainable food systems through technologies and enterprise) in 114 food-processing facilities from different production sectors.


Subject(s)
Microbiota , Microbiota/genetics , Food Handling/methods , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Metagenome , Metagenomics/methods , DNA/isolation & purification , Sequence Analysis, DNA/methods , Food Microbiology/methods
12.
Eur J Nutr ; 63(1): 121-133, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37709944

ABSTRACT

BACKGROUND: Snacking is a common diet behaviour which accounts for a large proportion of daily energy intake, making it a key determinant of diet quality. However, the relationship between snacking frequency, quality and timing with cardiometabolic health remains unclear. DESIGN: Demography, diet, health (fasting and postprandial cardiometabolic blood and anthropometrics markers) and stool metagenomics data were assessed in the UK PREDICT 1 cohort (N = 1002) (NCT03479866). Snacks (foods or drinks consumed between main meals) were self-reported (weighed records) across 2-4 days. Average snacking frequency and quality [snack diet index (SDI)] were determined (N = 854 after exclusions). Associations between snacking frequency, quality and timing with cardiometabolic blood and anthropometric markers were assessed using regression models (adjusted for age, sex, BMI, education, physical activity level and main meal quality). RESULTS: Participants were aged (mean, SD) 46.1 ± 11.9 years, had a mean BMI of 25.6 ± 4.88 kg/m2 and were predominantly female (73%). 95% of participants were snackers (≥ 1 snack/day; n = 813); mean daily snack intake was 2.28 snacks/day (24 ± 16% of daily calories; 203 ± 170 kcal); and 44% of participants were discordant for meal and snack quality. In snackers, overall snacking frequency and quantity of snack energy were not associated with cardiometabolic risk markers. However, lower snack quality (SDI range 1-11) was associated with higher blood markers, including elevated fasting triglycerides (TG (mmol/L) ß; - 0.02, P = 0.02), postprandial TGs (6hiAUC (mmol/L.s); ß; - 400, P = 0.01), fasting insulin (mIU/L) (ß; - 0.15, P = 0.04), insulin resistance (HOMA-IR; ß; - 0.04, P = 0.04) and hunger (scale 0-100) (ß; - 0.52, P = 0.02) (P values non-significant after multiple testing adjustments). Late-evening snacking (≥ 9 pm; 31%) was associated with lower blood markers (HbA1c; 5.54 ± 0.42% vs 5.46 ± 0.28%, glucose 2hiAUC; 8212 ± 5559 vs 7321 ± 4928 mmol/L.s, P = 0.01 and TG 6hiAUC; 11,638 ± 8166 vs 9781 ± 6997 mmol/L.s, P = 0.01) compared to all other snacking times (HbA1c remained significant after multiple testing). CONCLUSION: Snack quality and timing of consumption are simple diet features which may be targeted to improve diet quality, with potential health benefits. CLINICAL TRIAL REGISTRY NUMBER AND WEBSITE: NCT03479866, https://clinicaltrials.gov/ct2/show/NCT03479866?term=NCT03479866&draw=2&rank=1.


Subject(s)
Cardiovascular Diseases , Snacks , Female , Humans , Male , Diet , Energy Intake , Feeding Behavior , Glycated Hemoglobin , Adult , Middle Aged
14.
Nat Rev Microbiol ; 22(4): 191-205, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37968359

ABSTRACT

Machine learning is increasingly important in microbiology where it is used for tasks such as predicting antibiotic resistance and associating human microbiome features with complex host diseases. The applications in microbiology are quickly expanding and the machine learning tools frequently used in basic and clinical research range from classification and regression to clustering and dimensionality reduction. In this Review, we examine the main machine learning concepts, tasks and applications that are relevant for experimental and clinical microbiologists. We provide the minimal toolbox for a microbiologist to be able to understand, interpret and use machine learning in their experimental and translational activities.


Subject(s)
Machine Learning , Microbiota , Humans
15.
EBioMedicine ; 99: 104917, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38104504

ABSTRACT

BACKGROUND: Neuroblastoma is the most frequent extracranial solid tumour in children, accounting for ∼15% of deaths due to cancer in childhood. The most common clinical presentation are abdominal tumours. An altered gut microbiome composition has been linked to multiple cancer types, and reported in murine models of neuroblastoma. Whether children with neuroblastoma display alterations in gut microbiome composition remains unexplored. METHODS: We assessed gut microbiome composition by shotgun metagenomic profiling in an observational cross-sectional study on 288 individuals, consisting of patients with a diagnosis of neuroblastoma at disease onset (N = 63), healthy controls matching the patients on the main covariates of microbiome composition (N = 94), healthy siblings of the patients (N = 13), mothers of patients (N = 59), and mothers of the controls (N = 59). We examined taxonomic and functional microbiome composition and mother-infant strain transmission patterns. FINDINGS: Patients with neuroblastoma displayed alterations in gut microbiome composition characterised by reduced microbiome richness, decreased relative abundances of 18 species (including Phocaeicola dorei and Bifidobacterium bifidum), enriched protein fermentation and reduced carbohydrate fermentation potential. Using machine learning, we could successfully discriminate patients from controls (AUC = 82%). Healthy siblings did not display such alterations but resembled the healthy control group. No significant differences in maternal microbiome composition nor mother-to-offspring transmission were detected. INTERPRETATION: Patients with neuroblastoma display alterations in taxonomic and functional gut microbiome composition, which cannot be traced to differential maternal seeding. Follow-up research should include investigating potential causal links. FUNDING: Italian Ministry of Health Ricerca Corrente and Ricerca Finalizzata 5 per mille (to MPonzoni); Fondazione Italiana Neuroblastoma (to MPonzoni); European Research Council (ERC-StG project MetaPG-716575 and ERC-CoG microTOUCH-101045015 to NS); the European H2020 program ONCOBIOME-825410 project (to NS); the National Cancer Institute of the National Institutes of Health 1U01CA230551 (to NS); the Premio Internazionale Lombardia e Ricerca 2019 (to NS); the MIUR Progetti di Ricerca di Rilevante Interesse Nazionale (PRIN) Bando 2017 Grant 2017J3E2W2 (to NS); EMBO ALTF 593-2020 and Knowledge Generation Project from the Spanish Ministry of Science and Innovation (PID2022-139328OA-I00) (to MV-C).


Subject(s)
Gastrointestinal Microbiome , Microbiota , Neuroblastoma , Infant , Child , Female , Humans , Animals , Mice , Cross-Sectional Studies , Metagenome , Neuroblastoma/etiology
16.
Sci Rep ; 13(1): 18904, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919319

ABSTRACT

The oral microbiota plays an important role in the exogenous nitrate reduction pathway and is associated with heart and periodontal disease and cigarette smoking. We describe smoking-related changes in oral microbiota composition and resulting potential metabolic pathway changes that may explain smoking-related changes in disease risk. We analyzed health information and salivary microbiota composition among 1601 Cooperative Health Research in South Tyrol participants collected 2017-2018. Salivary microbiota taxa were assigned from amplicon sequences of the 16S-V4 rRNA and used to describe microbiota composition and predict metabolic pathways. Aerobic taxa relative abundance decreased with daily smoking intensity and increased with years since cessation, as did inferred nitrate reduction. Former smokers tended to be more similar to Never smokers than to Current smokers, especially those who had quit for longer than 5 years. Cigarette smoking has a consistent, generalizable association on oral microbiota composition and predicted metabolic pathways, some of which associate in a dose-dependent fashion. Smokers who quit for longer than 5 years tend to have salivary microbiota profiles comparable to never smokers.


Subject(s)
Cigarette Smoking , Microbiota , Humans , Cross-Sectional Studies , Nitrates , Microbiota/genetics , Smokers , RNA, Ribosomal, 16S/genetics
17.
Nat Commun ; 14(1): 6440, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833275

ABSTRACT

It is unclear whether West Nile virus (WNV) circulates between Africa and Europe, despite numerous studies supporting an African origin and high transmission in Europe. We integrated genomic data with geographic observations and phylogenetic and phylogeographic inferences to uncover the spatial and temporal viral dynamics of WNV between these two continents. We focused our analysis towards WNV lineages 1 (L1) and 2 (L2), the most spatially widespread and pathogenic WNV lineages. Our study shows a Northern-Western African origin of L1, with back-and-forth exchanges between West Africa and Southern-Western Europe; and a Southern African origin of L2, with one main introduction from South Africa to Europe, and no back introductions observed. We also noticed a potential overlap between L1 and L2 Eastern and Western phylogeography and two Afro-Palearctic bird migratory flyways. Future studies linking avian and mosquito species susceptibility, migratory connectivity patterns, and phylogeographic inference are suggested to elucidate the dynamics of emerging viruses.


Subject(s)
West Nile Fever , West Nile virus , Animals , West Nile virus/genetics , Phylogeny , Europe/epidemiology , South Africa , Birds
18.
Cell Host Microbe ; 31(11): 1804-1819.e9, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37883976

ABSTRACT

The Segatella copri (formerly Prevotella copri) complex (ScC) comprises taxa that are key members of the human gut microbiome. It was previously described to contain four distinct phylogenetic clades. Combining targeted isolation with large-scale metagenomic analysis, we defined 13 distinct Segatella copri-related species, expanding the ScC complex beyond four clades. Complete genome reconstruction of thirteen strains from seven species unveiled the presence of genetically diverse large circular extrachromosomal elements. These elements are consistently present in most ScC species, contributing to intra- and inter-species diversities. The nine species-level clades present in humans display striking differences in prevalence and intra-species genetic makeup across human populations. Based on a meta-analysis, we found reproducible associations between members of ScC and the male sex and positive correlations with lower visceral fat and favorable markers of cardiometabolic health. Our work uncovers genomic diversity within ScC, facilitating a better characterization of the human microbiome.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Humans , Male , Gastrointestinal Microbiome/genetics , Metagenome , Phylogeny , Prevotella , Female
19.
Microbiol Resour Announc ; 12(11): e0084423, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37855624

ABSTRACT

We report the draft genome sequence of strain B0820 of the cyanobacterium Tychonema bourrellyi isolated from the epilimnion of Lake Garda and assembled from a metagenome of a non-axenic culture. The strain analyzed was shown to produce anatoxin-a, a potent neurotoxin that can cause fatal intoxication in exposed organisms.

20.
Gut Microbes ; 15(2): 2262130, 2023 12.
Article in English | MEDLINE | ID: mdl-37786251

ABSTRACT

The role of diet and the gut microbiome in the etiopathogenesis of irritable bowel syndrome (IBS) is not fully understood. Therefore, we investigated the interplay between dietary risk factors and gut microbiota in IBS subtypes using a food frequency questionnaire and stool metagenome data from 969 participants aged 18-65 years in the ZOE PREDICT 1 study, an intervention study designed to predict postprandial metabolic responses. We identified individuals with IBS subtype according to the Rome III criteria based on predominant bowel habits during symptom onset: diarrhea (i.e. looser), constipation (i.e. harder), and mixed. Participants with IBS-D (n = 59) consumed more healthy plant-based foods (e.g. whole grains, leafy vegetables) and fiber, while those with IBS-C (n = 49) tended to consume more unhealthy plant-based foods (e.g. refined grains, fruit juice) than participants without IBS (n = 797). Microbial diversity was nominally lower in patients with IBS-D than in participants without IBS or with IBS-C. Using multivariable-adjusted linear regression, we identified specific microbiota variations in IBS subtypes, including slight increases in pro-inflammatory taxa in IBS-C (e.g. Escherichia coli) and loss of strict anaerobes in IBS-D (e.g. Faecalibacterium prausnitzii). Our analysis also revealed intriguing evidence of interactions between diet and Faecalibacterium prausnitzii. The positive associations between fiber and iron intake and IBS-diarrhea were stronger among individuals with a higher relative abundance of Faecalibacterium prausnitzii, potentially driven by carbohydrate metabolic pathways, including the superpathway of ß-D-glucuronide and D-glucuronate degradation. In conclusion, our findings suggest subtype-specific variations in dietary habits, gut microbial composition and function, and diet-microbiota interactions in IBS, providing insights into potential microbiome-informed dietary interventions.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Humans , Irritable Bowel Syndrome/microbiology , Diarrhea/microbiology , Constipation/complications , Diet
SELECTION OF CITATIONS
SEARCH DETAIL
...